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Permanent turbulent air #ow at low Mach number does not disturb the
longitudinal gradient of mean pressure associated with acoustic streaming, while
the pro"le of mean axial velocities of the air #ow is not appreciably modi"ed when
it is subjected to the wave generating the acoustic streaming. This is highlighted by
the present experiments and discussed in the theoretical framework initially
proposed by Rayleigh, then generalized by Nyborg and Westervelt. The result is,
on the one hand, the possibility of predicting simply the Reynolds stress exerted on
a permanent turbulent air #ow subjected to a wave generating acoustic streaming,
and on the other hand, the very likely absence of any in#uence of permanent
turbulent air #ow on acoustic streaming.
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1. INTRODUCTION

Acoustic "elds emitted into propagation mediums at rest can generate signi"cant
mean #ows, referred to as acoustic streaming. Initial observation of this
phenomenon can be traced back to Faraday [1]. Rayleigh [2] provided
a satisfactory interpretation based on the concepts stressed by Reynolds [3] on
turbulence. Acoustic velocities, having a role similar to that of turbulent velocity
#uctuations within turbulent #ows, are at the origin of stress acting speci"cally on
the mean pressure and velocities "elds of the #ow. Nyborg [4] and Westervelt [5]
completed this interpretation in broadening the basic hypotheses of Rayleigh's
theoretical framework. Lighthill's paper [6] and book [7] bring together current
knowledge on this subject.

During the 1980s, researchers showed great interest in the phenomenon of
interaction between #ows and forced acoustic "elds. One potential use could be
that of #ows being driven by acoustic "elds. To paint an overall picture of the
preoccupations that concerned them, the following may be cited: Ahuja et al. [8]
Blevins [9], Davis and Strahle [10], Ffowcs-Williams [11], Lowson [12], or
Shearin and Jones [13]. The theoretical framework of these authors is that of the
theory of wave instability, which Tam [14] for example, applies convincingly to the
interaction between acoustic waves and #ows.
022-460X/00/060001#29 $35.00/0 ( 2000 Academic Press
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A natural question arising from the study on acoustic streaming in mediums at
rest is to determine what it becomes when acoustic waves are emitted into #owing
mediums. According to the considerations of the authors cited above, the solution
to this question, which comes under the phenomenon of interaction between
acoustic "elds and #ows, is to be found in the context of the wave instability theory.
However, the theoretical framework of acoustic streaming should not be put aside
a priori. Indeed, by using the latter theory to interpret the phenomenon of the
separation of hot and cold air #uxes observed in the vortex-tube [15, 16], Kurosaka
[17] demonstrated that the theoretical framework of acoustic streaming could be
employed outside the "eld of application initially envisaged by Rayleigh [2], and
later, Nyborg [4] and Westervelt [5]: the "eld of propagation mediums initially at
rest.

The interest here is the eventual modi"cations that forced #ows cause on the
acoustic streaming. The geometry considered is that of a tube and the situation is
simpli"ed to forced permanent turbulent axial #ows, at low Mach number. The
acoustic "elds are generated by the emission of monochromatic plane waves.
Section 2 establishes formulas describing permanent turbulent air #ow, acoustic
streaming generated by acoustic waves emitted in air at rest and the said air #ow
subjected to the said waves. The general modelling, which is that of statistical
equations of #uid mechanics, allows Reynolds stress as a characteristic quantity.
The experimental study presented in section 3 provides empirical data which can be
interpreted in terms of Reynolds stress. On the basis of data presented in section 3,
the validity of the modelling in section 2 is examined (section 4) and that of the
theoretical framework of statistical equations of #uid mechanics is then shown. The
more signi"cant experimental results are interpreted in section 5; a simple
analytical relation between the Reynolds stresses relative to the air #ow, the
acoustic streaming and the air #ow subjected to the wave generating the acoustic
streaming is deduced and it is shown that permanent turbulent air #ow has very
likely no in#uence on acoustic streaming.

2. THEORETICAL MODELLING

The present section recalls the standard theoretical framework for stationary
turbulent air #ows and acoustic streaming. Only the results relative to acoustic
streaming in turbulent #owing mediums that do not require any peculiar
hypothesis are presented here.

2.1. GENERAL EQUATIONS OF CYLINDRICAL TURBULENT INCOMPRESSIBLE FLOW
OF STATIONARY STATISTIC MEAN

The systems considered are composed of air at room temperature, #owing in
cylindrical tubes at low velocities compared with the speed of sound (low Mach
number). It is well known that such #ows are described by mass balance and
momentum balance equations relative to incompressible #uids. In a system of
cylindrical co-ordinates "xed to the tube, the #ow variables which form the volumic
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mass o, static pressure p, and the velocity co-ordinates (v
r
, vh, vz) verify the following

general relationships (see for example, reference [18]):
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The air being at a uniform and constant temperature, the kinematic viscosity of air,
l is constant.

In the air #ows considered, the velocity and pressure #uctuations occur either
due to the turbulence, or due to the acoustic vibrations. To describe them, it is
standard to write out the linearization in equations (1) and (2):
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where the overlined values indicate the mean statistic and the apostrophe, the
#uctuation.

In practise, the mean determined most simply is the temporal one. In the case of
#ows whose means are stationary, it is generally admitted that, as a result of the
frequently evoked ergodicity hypothesis, the statistical and temporal means of the
variables coincide. Subsequently, it is supposed that the mean values of the
turbulent #ows studied are stationary. Moreover, with this hypothesis, the partial
derivatives of means in relation to time are zero.

Writing out the linearizations (3) in equations (1) and (2), by taking the mean of
the two elements in the equations and applying the nil properties of the #uctuation
mean and commutation of the mean and the derivation, equations (1) and (2)
become
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Equations (4) and (5) appear in a mathematical form similar to that of equations
(1) and (2). The terms q6

r
, q6 h and q6

z
, which are not found in the latter, come from the

mean of the squares or the cross-products of velocity #uctuations. Thus they are
expressed as
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They are referred to as components of Reynolds stress s6 . The latter is interpreted
as stress produced within the #uid by velocity #uctuations. Their particularity is to
exert on the mean #ow.

2.2. MODELLING PERMANENT TURBULENT FLOW SUBJECTED TO THE WAVES GENERATING
ACOUSTIC STREAMING

The purpose of the hypotheses that authors have made, in particular Rayleigh
[2], then Nyborg [4] and Westervelt [5], is to cancel the non-linear terms in the
left-hand side of equations (5). This enables the analytical solutions for acoustic
streaming. However, cancelling the convective derivatives renders the description
of acoustic streaming in air #ows inadequate. For this reason, equations (4) and (5)
with all terms have been adopted as the basis of the description of the mean air #ow
in a tube, subjected to velocity and pressure #uctuations.

Subsequently, three con"gurations of the system will be considered: (1)
a turbulent air #ow, forced by suction to a tube end, (2) propagation of an
acoustic wave emitted through a tube end into the air initially at rest, (3)
propagation of the wave in the turbulent air #ow. Equations governing the system
studied in each of these three con"gurations will be established in su$ciently
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normal and simple conditions so that they are written out easily for calculation and
experimental veri"cation.

In con"guration (1), the turbulent air #ow is, moreover, taken to be axial and
permanent. This brings about axisymmetry and leads to assume that the mean
scalar variables, noted here as vN
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and pN
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, verify, respectively, as
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With relations at equations (7) and (8), the continuity at equation (4) becomes
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In con"guration (2), the acoustic wave is assumed to be monochromatic, plane
and axisymmetric. It is assumed to be attenuated in its propagation through the air
at rest contained within the tube, so that this well-known critical condition for waves
to generate acoustic streaming is realized. The mean scalar variables, noted in the
present con"guration as vN

(2)r
, vN

(2)h, vN (2)z and pN
(2)

, are then relative to acoustic
streaming. As this is generated by axisymmetric waves in boundary conditions which
have axisymmetry, the acoustic streaming also will have axisymmetry. This gives

Lh
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The mass balance equation (4) is written as
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and the momentum balance equations (5) lead to
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The considerations concerning the symmetry of the acoustic "eld still apply to
con"guration (3). The #ow scalar variables being vN
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, vN
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, equations
(4) and (5), respectively, lead to
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In each of the three con"gurations, the components of Reynolds stresses s6
(1)

,
s6
(2)

and s6
(3)

are expressed according to the velocity #uctuations via formulas at
equation (6). The velocity #uctuations in con"guration (1), essentially due to the
turbulence, are purely random and predictable only statistically; the Reynolds
stress, they are associated with, will be designed by turbulent stress. The velocity
#uctuations in con"guration (2) corresponding to acoustic vibrations are, on the
contrary, purely periodic and may be calculated exactly; Reynolds stress, they are
associated with, will be designed by acoustic stress. For their calculation, it is
su$cient only to know the "eld of acoustic velocity.

2.3. ACOUSTIC STRESS IN MEDIUM AT REST

The present calculation aims to determine the Reynolds stress in con"guration
(2), which is purely acoustic stress. The acoustic velocity "eld is "rst calculated.

The sound source is placed at the end, of abscissa z
s
"0, of a tube with radius a.

It functions on a permanent regime and emits an acoustic wave into the air at rest,
towards the z positives. This wave is, by hypothesis, monochromatic of pulsation u,
with no azimuthal modes. Its propagation takes place, moreover, in the linear
domain at the speed of sound, c being a constant.

The "eld of acoustic pressure within the tube, which identi"es to the pressure
#uctuation p@

(2)
, can be written a priori:
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It satis"es Helmholtz equation expressed in the system of natural cylindrical
co-ordinates "xed to the tube. This equation does not contain any azimuth terms
and can be written as
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where the constant K"u/c is the total wave number. Equation (18) allows as
a general solution:
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are complex and depend on the boundary conditions of the di!erent tube walls.
According to the momentum balance equation, which here takes the form of

Euler equation,
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the acoustic velocity is also harmonic, with pulsation u:
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Its expression according to the previous constants is deduced from equation (20)
and from the expression of acoustic pressure p@
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, drawn from relationships (19) and

(17). The components of the spatial factor of complex velocity v@
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T
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By substituting relation (19) and the "rst equation of system (22) in relation (23)
and by making the calculation hypothesis
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Determining the constants A
1

and A
2

uses the boundary conditions imposed on
the cross-sections forming the tube ends. At the end of abscissa ¸, situated opposite
the source, the wave is subjected to a re#ection of coe$cient G"ge +u. On the
cross-section of the end carrying the source, acoustic velocity has, at the tube axis,
a value of <

0
imposed by the source and the re#ected waves in the stationary

regime.
The calculation of A

1
and A

2
leads to the expression of p@

(2)
:
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The expression of DF(z) D2, adopted in further applications in section 4:
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The components of acoustic velocity, which are obtained in writing out the
expression of constants A

1
and A

2
in relation (22), are
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The auxiliary function H(z) is given by
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Lastly, the calculation of acoustic stress is realized by writing out relations (30) in
formulas (6). It is facilitated by the hypothesis contained in relation (24). Bessel
functions J and J may then be assimilated to their series expansion of order 1.
0 1
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Conserving the real part of velocities and applying formulas (6), gives:
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2.4. QUESTIONS RAISED BY MODELLING OF THE VELOCITY FLUCTUATIONS
IN CONFIGURATION (3)

From the linearized equations of #uid mechanics, Kovasznay [19] showed that
small #uctuations occur according to three modes: acoustic, entropic and
rotational, connected with the particular type of propagation equation they
verify. According to this theory, the velocity #uctuations v@

(3)
that occur in

con"guration (3) are of the rotational type, written as v) )
(3)

, and of the acoustic type,
written as v?

(3)
. By hypothesis, they verify the linear relation of linear superposing:
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In the con"gurations considered here, the two types of #uctuations should be
distinguished, on "rst analysis, by appropriate signal processing. Fluctuations of
the rotational type v) )

(3)
, essentially associated with turbulence instabilities within

the air #ow, have the property to be random, while #uctuations of the acoustic type
v?

(3)
, principally associated with the periodic movement due to monochromatic

acoustic waves, are periodic. Moreover, as the physical causes, which generate the
velocity #uctuations v))

(3)
in con"guration (3), are the same as those generating v@

(1)
in
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con"guration (1), it is tempting to identify v) )
(3)

with the purely random #uctuation
velocity v@

(1)
. In a similar way, it is tempting to identify v?

(3)
with the purely periodic

acoustic velocity v@
(2)

.
However, the interaction theory developed by Chu and Kovasznay [20]

establishes the fact that velocity #uctuations of di!erent modes may interact
and produce new #uctuations of the second order. For this reason, it is probable
that random #uctuations propagate relative to the acoustic mode or, conversely,
that the acoustic mode generates swirls at a frequency multiple of that of the
forced wave. Then, in principle, it is not possible to assert that v?

(3)
is purely periodic

and v) )
(3)

, purely random.
The previous considerations show that the velocity #uctuations obtained in

con"guration (3) cannot be modelled without additional experimental data.

3. EXPERIMENTAL STUDY

The theoretical development in section 2 cannot be pursued without additional
data relative to the turbulent and acoustic stresses. The present section provides
such experimental data. They are relative to low Mach number turbulent air #ows
in a tube. These air #ows are subjected to plane acoustic waves.

3.1. SET-UP AND INSTRUMENTATION

A diagram of the experimental set-up is given in Figure 1. The tube, made from
perspex, has an inside diameter of 50 mm and is 5 mm thick. It is made up of several
sections, whose length is indicated in the same "gure. The sections are assembled
using perspex collars with an inside diameter of 60 mm and 60 mm length.

The acoustic waves are generated using a compression chamber with membrane
JBL of type 2482. This is placed at one end of the tube. An ending, mounted on the
other end, serves to attenuate re#ection of the incident waves. This is made up of an
exponential horn, the opening of which is obstructed and therefore made airtight by
a disk, covered on the side facing the tube with a material which absorbs the
intensity of acoustic waves. The length of the tube between the cross-section with
the sound emission source and that with the absorbant material of the ending is
7)34 m.

An electrical signal generator sends a sinusoidal signal to the power ampli"er
which feeds the compression chamber. It is programmed to send out frequencies in
the range 300}2000 Hz. The compression chamber is excited with a tension whose
value can attain 20 <

RMS
.

To create suction, a power of approximately 2000 W is available. The air inlet is
situated at the absorbant ending side (Figure 1). To ensure that the air inlet disturbs
the acoustic wave propagation as little as possible, it is carried out radially on
a short section thanks to the apparatus shown in Figure 2. The latter includes
triangular sectors to guide the air radially and, close to the tube wall, inclining it
with respect to the axis. The suction takes place perpendicularly to the tube axis
near the acoustic source.



Figure 1. Experimental set-up.

Figure 2. Radial air inlet.
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Pressures are measured by means of a Pitot tube with a diameter of 2 mm. The
latter is "xed to a sliding translation table following the diameter of the explored
cross-section. A pressure di!erential sensor Druck of type PDCR 20, with
a 1)96 mV/mbar sensitivity substracts the static pressure from the total pressure
and then converts the di!erence into an electrical signal. This is then "ltered before
being recorded. Only the lower frequency components of this signal are retained.

Acoustic pressure is measured using a 1
4
inch BruK el and KjaK er microphone of type

4136 and the chain of measurement usually associated with this. It is placed in
a cylindrical cavity with the same diameter as the microphone and facing inside the
tube. For practical reasons, the microphone capsule is set back 15 mm from the
inside wall of the tube. The present measurements are not a!ected, however, by the
frequency response of the cavity as the frequency of the "rst resonance harmonic is
11)33 kHz.

Recording of the electrical signal is analogue and is e!ectuated using a plotter.
The signals are "ltered and ampli"ed, if necessary, then recorded according to the
vertical position of the Pitot tube or according to the frequency of the waves
emitted, relative to the aim of measurement.

3.2. INVESTIGATIONS CARRIED OUT ON THE AIR FLOW WITHIN THE TUBE

(CONFIGURATION (1))

The experimental conditions correspond to con"guration (1) as de"ned in
section 2.2. The compression chamber is not excited and the air #ow is generated
using maximum suction power.
Figure 3. Velocity pro"le of the air #ow without acoustic wave.
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The cross-section by which the air enters the tube is located 0)51 m from the
absorbent covering of the ending. The measurements relating to the Pitot tube are
carried out in a cross-section located 5)41 m from the air-inlet. The suction takes
place 1)35 m further downstream.

Flow velocity at the point of measurement is deduced from kinetic pressure
measurement. This is obtained from the di!erence between total pressure and static
pressure, simultaneously delivered by the Pitot tube. This di!erence is provided in
the form of an electrical signal by the Druck pressure sensor.

The radial pro"les of axial velocities in the cross-section explored are obtained
by recording simultaneously the electrical signal and the position of the Pitot tube
on the explored diameter. In order to record the mean value of velocity, only
low-frequency components of the electrical signal (inferior to 5 Hz) are retained.
The translation speed is "xed at 0)25 mm/s.

The radial pro"le of mean axial velocities thus obtained is shown in Figure 3. It
presents a #attened parabolic evolution in the major part of the tube, since the
velocity varies by no more than 5 over 90% of the diameter. The amplitude of
velocity #uctuations of frequential components inferior to 5 Hz is in the order of
1 m/s. The maximum velocity of 42 m/s, taken at the axis, corresponds to a mean
#ow velocity of approximately 40 m/s.

3.3. INVESTIGATIONS CARRIED OUT ON THE ACOUSTIC FIELD (CONFIGURATION (2))

The experimental conditions correspond to con"guration (2) as de"ned in
section 2.2. The acoustic wave is generated in the medium at rest by exciting the
compression chamber.

The tension exciting the compression chamber is sinusoidal. Its frequency is
between 300 and 2000 Hz and its value is 13)6 <

RMS
. Acoustic readings are taken

using a microphone, 5)92 m from the side covered with the absorbant material of
the absorbant ending, in the cross-section where the radial pro"le of axial velocities
is explored.

The observation, with an oscilloscope, of the signals coming from the
microphone shows sine curves more or less distorted according to frequency.
Further study of the distortion is undertaken by exciting the compression chamber
with a tension of 13)6 <

RMS
. An HP 331A distorsiometer is used. The study enables

the following results to be determined: (1) as the compression chamber emits into
free "eld, the wave distortion rate in the compression chamber is relatively low and
concerns 1 to 3% of fundamental; (2) it is notably increased when the compression
chamber is in the con"guration of emission in the tube, since it attains a mean value
in the order of 10% of fundamental at that time. The values, which are in the
interval between 7 and 20% of fundamental, are however, closely regrouped
around the mean.

Figure 4, which gives the graph for the evolution of RMS-acoustic pressure
p
RMS

according to the frequency, is the result of a frequency range sweep at
a velocity of 17 Hz/s. The graph makes apparent regular oscillations of
RMS-acoustic pressure according to wave frequency. These oscillations have



Figure 4. Evolution of the RMS acoustic pressure according to frequency*propagation medium
at rest.
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a more or less constant period of 29)8 Hz. Inferior and superior envelopes, which
delimit the oscillation amplitude, are indicated.

The graph in Figure 4 enables the mean value of the acoustic pressure level
present in the tube to be determined. It is in the order of 145 dB (ref. 2]10~5 Pa).
Readings taken by means of a microphone placed outside the tube, at around
0)05 m from the wall, show that the attenuation produced by the tube wall varies
greatly according to the wave frequency and the longitudinal position. The
recorded attenuations are evenly distributed throughout the range of 27}52 dB.
The mean is in the order of 40 dB.

3.4. INVESTIGATIONS CARRIED OUT ON THE AIR FLOW AND THE WAVE GENERATED
SIMULTANEOUSLY (CONFIGURATION (3))

The experimental conditions correspond to con"guration (3) as de"ned in
section 2.2. The acoustic wave is generated as described in section 3.3 and the air
#ow is that described in section 3.2.

The e!ect of the acoustic wave at a frequency of 400 Hz on the velocity "eld is
evaluated by comparing the reference pro"le (Figure 3) with that obtained when the
wave is emitted into the air #ow (Figure 5). The mean of axial velocity is obtained
by "ltering the electrical pressure signal at 5 Hz, as in the recording shown in
Figure 3. The radial pro"le is obtained by recording simultaneously this signal and
the position of the Pitot tube on the explored diameter.

Both the corresponding mean velocity pro"les coincide to more than 0)25 m/s.
Thus, the acoustic wave modi"es only imperceptibly the mean velocity "eld.
Conversely, Figure 5 shows that the acoustic wave has a sizeable in#uence on the
velocity #uctuations, since it reduces the amplitude from a value of 1 m/s to
approximately 0)5 m/s.

The e!ect of the #owing propagating medium on the acoustic "eld is "rst
evaluated from the evolution of the RMS-acoustic pressure obtained when the
wave generated as described in section 3.3 is emitted in the air #ow as section 3.1.
The graph obtained in this case (Figure 6) is similar to the one obtained when the



Figure 5. Velocity pro"le of the air #ow subjected to the acoustic wave at 400 Hz.

Figure 6. Evolution of the RMS acoustic pressure according to frequency*propagation medium
#owing.
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air is at rest (Figure 4). The oscillation period, of 29)8 Hz, is equal to that obtained
before. The inferior and superior envelopes, which have the same form, are
however, closer together, showing a reduction of the oscillation amplitude by
a factor of 0)8}0)9, at every wave frequency.

The e!ect of the #owing propagating medium on the acoustic "eld is "nally
evaluated from the study of the rate of distortion. The reading gives values of
between 15 and 30% of fundamental and shows an increase in the rate of
distortion of between 5 and 10% due to wave propagation in the turbulent air
#ow. The mean value of the rate of distortion is, however, in the order of 17%
of fundamental.
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3.5. LONGITUDINAL GRADIENTS OF MEAN PRESSURE NEAR THE INNER WALL

Two pressure intakes 0)14 m apart provide static pressure levels to the wall and
allow the measurement of longitudinal gradients of mean pressure produced by the
acoustic wave near the inner wall of the tube. The one further upstream, at 5)92 m
from the absorbant ending side, is located in the cross-section where the velocity
pro"les and evolutions of RMS-acoustic pressure according to frequency are
recorded.

The di!erence in the pressures measured in the two cross-sections is given in the
form of an electrical signal by the di!erential pressure sensor. The mean value of
this di!erence is small and requires ampli"cation. An ampli"cation gain of 64
is adopted in the present measurements. This makes it possible to notice that
the signal can be distinguished signi"cantly from the background noise of
measurement.

Temporal mean is evaluated by the amplitude of the components at the
lowest frequencies. The electrical signal is "ltered to conserve only the frequential
components inferior or equal to 1 Hz. The longitudinal gradient of mean pressure
is then evaluated by dividing this amount by the distance which separates the static
pressure intakes.

Frequencies in the range 300}2000 Hz are explored at a velocity of 4)2 Hz/s.
The procedure for recording the longitudinal gradients of mean pressure
consists of superimposing several frequency sweeps. This procedure highlights the
reproducibility of the e!ects measured.

Figure 7 shows two recordings of longitudinal gradients of mean pressure
according to wave frequency in the same graph. One is obtained where the acoustic
wave is emitted into the medium at rest (con"guration (2)) and the other where it is
emitted into the permanent turbulent air #ow (con"guration (3)).

With or without #owing air, the longitudinal gradient of mean pressure shows
regular oscillations of a 27)8 Hz period, according to wave frequency. The typical
value of oscillation amplitude is obtained at 400 Hz; it is 20 Pa/m. This amplitude
can reach 40 Pa/m for other frequencies. In both cases, the envelopes surrounding
the oscillation amplitude coincide; they indicate, moreover, that the action of the
acoustic wave decreases with the frequency and becomes insigni"cant from a value
to 1000 Hz.
Figure 7. E!ect of the frequency on the longitudinal mean pressure gradient.
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Finally, the remarkable result here is that, when the wave is emitted into the
permanent turbulent air #ow, the oscillations are hardly deformed and add to the
usual linear loss of pressure. A linear loss of pressure of 450 Pa/m is measured on
the readings.

4. VALIDITY OF THE MODELLING

Experimental results analogous to those presented in section 3 are generally
described in the framework of the theory of wave instability. However, the
formalism issued from that of acoustic streaming (section 2) should be more simple.
As its validity has been well established only when propagating mediums are at
rest, its validity must be checked in the present case of #owing mediums.

4.1. MODELLING THE AIR FLOW

The hypotheses concerning the modelling of the air #ow in the tube (section 2.2)
are reviewed and controlled to determine that they have been borne out correctly in
the experiments described in section 3.

The mean velocity of air is maximum at the axis and is 42 m/s. The air #ow,
whose Mach number is greatly inferior to 0)3 (Mach number always inferior or
equal to 0)124), can be likened to the #ow of an incompressible #uid. Its description
by means of Navier}Stokes' equations (1) and (2) is therefore accurate.

The air #ow, which takes place within a tube having a diameter of 0)050 m with
a mean velocity of 40 m/s, possesses a Reynolds' number of 2 000 000. The value of
2000 de"ning the upper limit of Reynold's numbers of transition to turbulence
being exceeded greatly, the air #ow is fully turbulent. Moreover, it is commonly
accepted that the permanent regime of #ow in tubes is set up for ratios of length to
diameter greater than 10, from which point the e!ects of air-inlet are negligible. As
the length of the tube between the inlet and the outlet (6)71 m) is large compared to
its diameter (0)050 m), the air #ow presents the characteristics of permanent
turbulent regime in the greater length of the tube. This makes the modelling of the
mean turbulent air #ow valid by the statistical equations (3) and (4).

In the absence of device communicating a kinetic moment to the air #ow, the
latter possesses a purely axial mean movement. Relations (7), (8) and (11) are
therefore justi"ed. Moreover, it should be noted that the #attened radial pro"le of
axial velocity (Figure 3) is typical of permanent turbulent regime.

The hypotheses of permanent turbulent #ow in incompressible #uid agree with
the experimental conditions; in particular, the description by the equations (10), (14)
and (16) is relevant.

4.2. MODELLING THE ACOUSTIC FIELD

Each of the hypotheses concerning the modelling of the acoustic "eld (section 2.3)
is "rst controlled to determine whether it has been borne out correctly in the
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experiments described in section 3. The following four hypotheses of Helmholtz'
equation (18) are "rst treated: axisymmetry, linear propagation, monochromatic
wave and plane wave.

The axisymmetry of the wave comes from the fact that, in the compression
chamber, emission of the acoustic wave is produced by displacing a membrane with
axisymmetry following the axis of a tube with axisymmetry. A wave thus generated
cannot contain azimuthal structures.

The linearity of wave propagation and the monochromatic wave hypotheses are
studied using the measurement of rates of distortion (section 3.3). The high
value: 13)6 <

RMS
, of excitation tension in the compression chamber produces

non-negligible rates of distortion which are closely grouped around the mean
10% of fundamental. These rates of distortion which explain all the potential
causes of distortion namely: coupling of the acoustic vibrations with the vibrations
of the tube wall, distortion at emission by the source, non-linearity of propagation,
do not exceed the value of 20% of fundamental. The result is that, irrespective of the
wave frequency, at least 75% of the acoustic power is fundamental and, therefore,
travels linearly in the form of a monochromatic wave.

It is widely acknowledged that ratios of wavelength to the tube diameter for
which the wave is still plane have a maximum value between 3 and 4. The
frequencies, which are tested in the range 300}2000 Hz, correspond to a maximum
ratio of wavelength to tube diameter of 3)43. The hypothesis of plane wave is here
veri"ed.

The calculation hypothesis contained in equation (24) is now dealt with. An
overevaluation of k

T
r by Dk

T
a D, where a is the tube radius, is carried out using

measurements of the attenuation of acoustic intensity by the tube wall. With the
smallest attenuation of 27 dB measured at the tube wall (section 3.3), one can write:

I
r

I
z

"

1
500

. (35)

The radial component of the acoustic intensity I
r
is absorbed or transmitted by the

wall. The longitudinal one I
z

is transmitted following the tube axis. Ignoring the
acoustic intensity absorbed into the perspex, and in expressing, at radius a, the
components I

r
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2
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) of acoustic intensity by
means of formulas (26) and (30), it can be deduced, by approximating k

T
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modulus Dk
T
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In acknowledging that Dk D+K+u/c, one obtains:
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then the overevaluation valid for all the frequencies less than 2000 Hz:

Dk
T
a D)0)019. (38)

The latter shows that hypothesis k
T
r small compared with 1 is veri"ed in the

present experiments.
Validity of the modelling is now discussed by comparing the predictions from

formula (28) with the experimental results shown in Figure 4. Relation (38) enables
the assumption k

r
+Dk D+K+u/c to be made. Application of this approximation

in formulas (28) and (29) leads to the prediction of a doubly periodic evolution of
RMS-acoustic pressure, according to pulsation u to be predicted, due to the terms
cos[2k

r
(¸!z)!u] and cos[2k

r
¸!u] present, respectively, in the numerator

and denominator of DF(z) D2 (formula (29)).
The periods of oscillation of RMS-acoustic pressure Df

N
"Du

N
/2n and Df

D
"

Du
D
/2n, due respectively to the terms cos[2k

r
(¸!z)!u] and cos[2k

r
¸!u],

are calculated by identifying 2(¸!z)/c with 2n/Du
N

and 2¸/c with 2n/Du
D
;

from the data mentioned in Figure 1 Df
N
"29)3 Hz and Df

D
"23)4 Hz are

obtained. As these values are close, the oscillations in p@
(2)RMS

should appear with a
beating.

Finally, mathematical study of relation (28) shows that p@
(2)RMS

does not depend
on u while acoustical properties (re#ection coe$cient G and speci"c impedance of
the lateral inner wall Z

T
) are supposed to be independent of wave frequency.

Readings in Figure 4 con"rm all these predictions. Measurement of the period of
oscillation from the readings gives the value 29)8 Hz, close to the 29)3 Hz predicted,
showing that the period of the numerator of DF(z) D2 (formula (29)) is more important
than that of denominator. However, the irregularity of the oscillations, particularly
marked in the range 1000}1500 Hz, is easily interpreted as a beating due to
interferences with oscillations of close period; this indicates that oscillations due to
the denominator of DF(z) D2 cannot be neglected. The lack of any signi"cative
tendency, in the tested range of frequencies, concerning the evolution of the
oscillation amplitude of p@

(2)RMS
according to frequencies f, indicates that acoustic

properties of the walls, G and Z
T
, are not dependent on f ; this fact is widely

acknowledged for hard materials as perspex in the tested range of frequencies.
The theoretical modelling adopted for the acoustic wave is in satisfactory

agreement with the experiment. Formulas (28) and (30) are then, relevant.

4.3. MODELLING THE ACOUSTIC STRESS IN MEDIUM AT REST

The longitudinal gradient of mean pressure experimentally outlined in section 3.5
is obviously an e!ect of the forced acoustic wave. Here, it is examined as to whether
this is a consequence of the acoustic streaming as described by formulas (14) and
(32).

First, it should be observed that, in the present experiments, an acoustic
streaming undoubtedly exists. Indeed, relation (36) shows that the well-known
critical condition for acoustic streaming, which is that of an attenuated wave
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[4}6], is realized here. Moreover, the validity of the acoustic wave modelling
adopted, highlighted in section 4.2, ensures a priori that of formulas (32) giving the
acoustic stress s6

(2)
. Finally, the present experimental veri"cation aims to rule out

the possibility, in principle, that the longitudinal gradient of mean pressure
observed in the air at rest has an origin other than acoustic streaming.

Now, the conditions for which the ratio Dp6 /s is representative of the longitudinal
gradient of mean pressure L

z
pN , are determined. Since the value of di!erence in static

pressures Dp6 decreases when the distance s separating the measurement
cross-sections decreases, it must retain a value su$ciently great for Dp6 to be
distinguished from the background noise of measurement. The question is to know
whether the chosen distance s is su$ciently small.

Con"guration (2) of the present experimentations is similar to that of the
standard calculation presented by Lighthill in references [6] or [7]. In this
con"guration, acoustic streaming organizes itself in a periodic spatial structure,
where the spatial period is equal to a quarter of the wavelength j of the wave which
generates the acoustic streaming.

The quantity DpN /s is obviously far from L
z
pN when s*j/4. The rough criterion

s(j/4 arises. With the adopted value s"0)14 m, the gradients it is not invalid to
approach by DpN /s must be generated by waves with a frequency f verifying:

f)605 Hz. (39)

According to equations (14), the adopted method of measurement, which may
provide a representative approximation of o~1L

z
pN
(2)

, does not allow one to
immediately obtain s6

(2)
. However, Lighthill [6] or [7] stresses that, in the standard

study of acoustic streaming, Rayleigh [2] then Nyborg [4] and Westervelt [5]
make, from the assumption of small acoustic streaming velocities, the hypothesis of
negligible convective accelerations and velocity Laplacians. This leads to the
identi"cation of the mean pressure gradient to acoustic stress. The present case is
no di!erent from the standard one. It is therefore valid to identify s6

(2)
with o~1 $pN ,

and in particular, q6
(2)z

with o~1L
z
pN
(2)

.
The veri"cation that the longitudinal gradient of mean pressure generated is due

to acoustic streaming is now dealt with. It is based on the equation of system (32)
giving q6

(2)z
.

As acoustic properties of the walls do not depend overall on frequencies (section
4.2), the mathematical study of this equation is realized by assuming that G and
Z

T
are independent of frequency. This study shows that q6

(2)z
is a periodical function

according to f, whose periods are a priori those of the terms p@2
(2)RMS

, DH (z) D/ DF(z) D
and sin(u

H
!u

F
!u

z
). It is possible to prove that the periods are, at a good

approximation: Df
N

and Df
N
, i.e., those of p@

(2)RMS
indicated in section 4.2.

The oscillations of p@
(2)RMS

according to frequency (Figure 4) have an easily
detectable period of 29)8 Hz (section 3.3) and another one evaluated at 23)4 Hz,
appearing only in a beating (section 4.2). The oscillations of DpN /s (Figure 7) show
a main period of 27)8 Hz (section 3.5), close to the main period of p@

(2)RMS
.

Moreover, the attenuation of amplitude observed in the range of frequencies
between 400 and 500 Hz could be interpreted as a beating due to interference of the
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oscillations at 27)8 Hz with oscillations of close period. The very likely existence of
a second period for the oscillations of DpN /s and the good agreement of the main
periods of p@

(2)RMS
and DpN /s make it highly probable that the longitudinal gradient

of mean pressure is generated according to the modelling proposed in formulas (32).
The same mathematical analysis also shows that the amplitude of the oscillations

in q6
(2)z

increases according to frequency while G and Z
T

do not depend on
frequency. Now, the reading in Figure 7, relative to the medium at rest, provides
a notably di!erent evolution: q6

(2)z
has a signi"cant value in the range 300}1000 Hz,

but the amplitude of the oscillations does not evolve in a well-determined sense
according to frequency. Moreover, for frequencies superior to 1000 Hz, the
amplitude of q6

(2)z
is strongly attenuated and disappears in the background noise

of measurement.
The validity of the acoustic wave modelling being established up to 2000 Hz

(section 4.2), the attenuation from 1000 Hz cannot be due to the fact that one of the
hypotheses of this modelling (for example, of the plane wave) should no longer be
veri"ed for the present experiments.

Moreover, if the attenuation was due to molecular relaxation, it would occur in
a similar way for the RMS-acoustic pressure. The reading in Figure 4 does not
show any attenuation in p@

(2)RMS
up to 2000 Hz. The hypothesis of attenuation due

to molecular relaxation does not hold.
On the other hand, it appears that the decrease of oscillation amplitudes begins

almost from frequencies for which criterion (39) is no longer valid. It seems that the
di!erences between the predictions concerning the amplitude of the oscillations of
q6
(2)z

and the readings must be attributed to the measurement instrument of pressure
gradients. The latter takes pressure at two "xed points in the tube wall. Acoustic
streaming being attached to the standing wave, and its wavelength and position
varying with the frequency of the wave, the instrument cannot reveal any tendency,
according to the only parameter frequency.

In spite of the poor agreement between the predicted and measured evolutions of
the amplitude of q6

(2)z
, likely due to the instrument, the good agreement between the

oscillation periods of q6
(2)z

and p@
(2)RMS

show that formulas (32) are relevant.

5. INTERPRETATION OF THE EXPERIMENTAL RESULTS

The validity of the theoretical modelling in section 2 (section 4) and the more
signi"cative experimental data provided in section 3 allows one to pursue now the
theoretical development. It results in an interpretation of these data in terms of the
in#uence of air #ow on acoustic streaming.

5.1. MOTIVATION AND BASIS OF THE DISCUSSION

It is shown in section 4 that formulas proposed in section 2 for the theoretical
modelling of permanent turbulent air #ow submitted to acoustic waves generating
acoustic streaming, agree with the experiments presented in section 3. However, it is
emphasized in section 2.4 that, with no additional information previously available,
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this modelling must have left the issue of eventual relations between quantities
relative to the three con"gurations in abeyance.

This issue is in connection with the in#uence that permanent turbulent air #ow
may exert on acoustic streaming. The relation

s6
(3)
"s6

(1)
#s6

(2)
, (40)

seems, intuitively, to be a consequence of additivity of longitudinal mean pressure
gradients, experimentally established in section 3.5. It expresses that the stress s6

(2)
producing acoustic streaming superimposes onto the stress s6

(1)
inside the

permanent turbulent air #ow. It is clear that if relation (40) were veri"ed,
permanent turbulent air #ow would be found to have no in#uence on acoustic
streaming.

The purpose of the present discussion is to establish relation (40) (sections 5.2 and
5.3) and that the high probability for permanent turbulent air #ow has no in#uence
on acoustic streaming (section 5.4). Let us note that only a direct measurement of
each Reynolds stress in equation (40) would enable the solution of this issue. But, if
it is standard to carry out the measurement of purely turbulent stress s6

(1)
and

Reynolds stress s6
(3)

using a hot-wire, it is on the contrary, di$cult to obtain that of
acoustic stress s6

(2)
, due to the fact that the #uctuations occur in a medium at rest

(see for instance Bruun [21]).
The "rst experimental result taken as a basis for the present discussion is

presented in the last paragraph of section 3.5. It asserts that the longitudinal
gradient of mean pressure in con"guration (3) is the sum of that produced by the
loss of pressure in con"guration (1) and of that generated by the acoustic wave in
the medium at rest in con"guration (2). Taking into account measurement
precision, one can write

L
z
pN
(3)
+L

z
pN
(1)
#L

z
pN
(2)

. (41)

The second experimental result is that the pro"le of mean axial velocities of the
turbulent air #ow subjected to an acoustic wave at 400 Hz, whose e!ect on the
gradient of mean pressure is signi"cant (section 3.5), is not greatly modi"ed by the
acoustic "eld (section 3.4)

vN
(3)z

+vN
(1)z

. (42)

The validity of this result, controlled at other frequencies, is assumed for all
frequencies.

The third experimental result retained concerns the velocity #uctuations in the
di!erent con"gurations. Some experiments reported in section 3.4 show that the
acoustic wave modelling developed in section 2.3 is still valid when the waves
propagate in permanent turbulent air #ows: readings in Figures 4 and 6 show that
oscillation periods in RMS-acoustic pressure and the general shape of inferior and
superior envelopes are unchanged by the permanent turbulent air #ow. The
oscillation amplitude, which is, however, reduced with a factor b comprised
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between 0)8 and 0)9, makes it possible to write

v?

(3)
+b )v@

(2)
. (43)

The symbol+is used to translate the fact that, thoroughly, the acoustic
mode does not coincide exactly with the purely periodic part of the #uctuations
(section 2.4).

5.2. APPLICATION OF THE INTERACTION THEORY

The reduction in amplitude of the RMS-acoustic pressure expressed by relation
(43) is a consequence of the well-known phenomenon of attenuation due to
di!raction by turbulence whose scale is small compared with the wavelength of the
wave [22}24].

The interaction theory of Chu and Kovasznay [20] predicts the existence of an
interaction between the acoustic mode and the rotational mode of the turbulent air
#ow. This theory is based on the hypothesis of #uctuations of small amplitude and
weak velocity gradients. Then, in con"guration (3) of the discussed experiments, the
aforementioned consequences are undoubtedly valid in the main.

The interaction between acoustic and rotational modes may be speci"ed.
Gaviglio mentions in the book by Favre et al. [25] that the e!ect of this interaction
is generally to produce a #uctuation transfer from the acoustic mode to the
rotational one, so that, "nally, the rotational mode contains all the stochastic
#uctuations and the acoustic mode, all the periodic #uctuations. It is clear that
approximation (43) then becomes equality:

v?

(3)
"b )v@

(2)
, (44)

and that it can be written

v ) )

(3)
"a )v@

(1)
. (45)

The #uctuation transfer between modes is taken into account by the factor a.
Relations (44) and (45) allow transformation of the superposing relation (34) into

v@
(3)
"a )v@

(1)
#b )v@

(2)
. (46)

In writing out relation (46) in formulas (6) and by gathering #uctuations of the
same type, the Reynolds stress acting in con"guration (3) writes, due to the general
property of bilinearity of s6 relative to v@:

s6
(3)
"a2 ) s6

(1)
#b2 ) s6

(2)
#2ab ) s6

(1,2)
. (47)

The squares of the velocity #uctuations relative to con"gurations (1) and (2)
provide, respectively, Reynolds stresses s6

(1)
and s6

(2)
. The cross-products of velocity
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#uctuations are grouped together in the mixed stress s6
(1,2)

. In Appendix A, it is
shown that the stochastic independence of the random velocity #uctuations v@

(1)
and

periodic acoustic velocities v@
(2)

leads to nil-value of the mixed stress s6
(1,2)

. Relation
(47) then becomes

s6
(3)
"a2 ) s6

(1)
#b2 ) s6

(2)
. (48)

When few #uctuations are transferred from the acoustic mode to the rotational
one, a+b+1 and relation (48), which expresses the consequences deduced from
the interaction theory, becomes equivalent to equation (40).

5.3. APPLICATION OF THE MAIN EXPERIMENTAL RESULTS OBTAINED

Relation (41) plays a central role. It can be transformed into strict equality

L
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z
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, (49)

by introducing a factor c, which expresses the measurement inaccuracy of
the amplitude of the longitudinal gradient of mean pressure measurements in
con"guration (2).

The veri"cation realized in section 4.1 leads to the adoption of systems (10), (14)
and (16) as the starting point for the present proof. In fact, only the projection
equations following z are retained here
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An obvious linear combination of the three equations allows one to write:
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and by taking into account the experimental result contained in relation (49), it is
deduced:
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The experimental result contained in relation (42) may, at "rst approximation, be
replaced by equality

vN
(1)z

"vN
(3)z

. (53)
This is allowed by

vN
(2)z

"0. (54)

Taking into account relations (53) and (54) in equation (52) leads to
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"q6
(1)z

#cq6
(2)z

. (55)

This is the particular case of relation (48) obtained in writing a"1 and b"Jc.
It is easily shown that the relation b"Jc is plausible since it comes from relation
(44) and homogeneity of Ds6

(2)
D with Dv6

(2)
D2/a. Then, relation (55) shows that the

present experiments prove the validity of relation (40), at the "rst approximation.
It is clear that the present measurements do not allow one to establish without

doubt the validity of relation (40) in all more advanced approximations. However,
it can be noticed that it is su$cient to write
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"vN
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#cvN
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(56)

and to use the fact that the air #ow in con"guration (1) is turbulent and permanent
(relations (8) and (9)) for relation (55) still be true at order 1.

Lastly, it appears that, when the propagation lengths are su$ciently small, the
attenuation factor c is close to 1 and the additive relation

q6
(3)z

"q6
(1)z

#q6
(2)z

(57)

holds.

5.4. INFLUENCE OF PERMANENT TURBULENT AIR FLOWS ON ACOUSTIC STREAMING

Relation (40) is proved in two di!erent ways from the experimental results
contained in approximations (41)}(43).

Section 5.2 puts forward considerations from the interaction theory to transform
approximation (43) derived from the experiments, into an equality. The delicate
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point, which is the calculation of the mixed stress is rendered possible by the
interaction theory. Indeed, this enables all the stochastic #uctuations to be grouped
together in the rotational mode and all the periodic ones in the acoustic mode. The
remainder of the proof consists in usual algebraic handlings. In this way, the result
is essentially based on the predictions of the interaction theory [20].

Section 5.3 adopts as a starting point relations (10), (14) and (16) coming from the
statistic equations of #uid mechanics, whose validity is controlled in section 4.1. The
proof uses approximation (41) as its "rst mainstay. The second one, say approximation
(42), only provides the result via the two approximations (53) then (56).

The proof in section 5.3, which is entirely based on experimental results, seems
better founded, but relations (53) and (56) express a hypothesis of convection of
acoustic streaming by the propagating medium of the wave. This hypothesis is,
however, natural because it already applies to the acoustic velocities of waves.

Relation (40) expresses the superimposing of turbulent and acoustic stresses,
respectively, relative to con"gurations (1) and (2). It then translates the absence of
interaction between the permanent turbulent air #ow and the acoustic streaming.
The convection hypothesis contained in equations (53) and (56) agrees with this
interpretation of relation (40). The interpretation deduced from the interaction
theory, for which #uctuations are extracted from the acoustic mode but do not
a!ect the remainder, is also acceptable.

Finally, relation (40) could be at fault only if, simultaneously, consequences of the
interaction theory and the hypothesis of convection of acoustic streaming by
permanent turbulent air #ow were at fault. It can be deduced that permanent
turbulent air #ow has, very likely, no in#uence on acoustic streaming. This is true in
the present experiments and more generally every time the propagating medium at
rest in which a wave generates acoustic streaming is put into #ow in permanent
turbulent regime.

Let us note the importance by the hypothesis of permanence of the #ow regime.
It is easy to see that the present considerations should no longer be valid without
the latter.

6. CONCLUSION

The object of the present study is acoustic streaming generated, in permanent
turbulent air #ow at low Mach numbers, by acoustic waves of high intensity and
obeying the linear propagation equation. Practical interest of the study is that of air
#ows being driven by acoustic means.

The study shows that statistical equations of #uid mechanics are able to describe
permanent turbulent air #ow submitted to a wave generating acoustic streaming. It
also highlights the utility of distinguishing the notions of turbulent and acoustic
stresses, according to whether the #uctuations are of random or periodic nature.
Lastly, it predicts on the basis of the interaction theory [20] and the present
experiments that, in the usual con"gurations, the acoustic stress add to the
turbulent one.

This last result allows resolution of the issue consisting in predicting the
Reynolds stress exerted on an air #ow subjected to a wave generating acoustic
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streaming, since it is deduced from the knowledge of the stresses in two simple
con"gurations: that where the air #ow is generated alone and that where the
acoustic "eld is generated alone. A systematic way of modelling the phenomenon is
then suggested.

Finally, the study is an illustration that permanent turbulent air #ow has very
probably no in#uence on acoustic streaming, the latter being simply convected by
the air #ow.
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APPENDIX A: NIL-PROPERTY OF THE MIXED STRESS

The general method proposed by Tatarski [24] to evaluate the mixed stress
s6
(12)

should consist in the evaluation of a correlation function. A simpler method is
here rendered possible because of the fact that velocity #uctuations v@

(1)
and v@

(2)
are

stochastically independent. The nil-property of the mixed stress s6
(12)

will be shown
using the notion of ¹-period conditioned mean, designed by S .T

T
. Let G (t) be

a stochastic function of time t. The ¹-conditioned mean of G (t) relative to time t is
de"ned by

SGT
T
(t)" lim

N?=

1
N

N
+
k/1

G (t#k¹ ). (A1)

If G(t) is ¹-periodic, the immediate consequence:

SGT
T
(t)"G(t#k¹ ) (A2)

holds for all integer k and all t in the interval [0, ¹]. Moreover, the period
conditioned mean is in connection with the usual stochastic mean by the relation:
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T
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The function G(t) is now one of the cross-products v@
X
L
Y
v@
Z

which make up the
components of the mixed stress s6

(12)
. According to formulas (6) and (31),

G(t)"v@
(1)X

L
Y
v@
(2)Z

(A4)
or
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Here, period ¹ is that of the acoustic wave of pulsation u:

¹"

2n
u

. (A6)
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Velocity #uctuations v@
(1)

and v@
(2)

, which are, respectively, stochastic and periodic,
still have time derivatives, respectively, stochastic and periodic. The ¹-conditioned
mean of v@

(1)X
L
Y
v@
(2)Z

writes
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and that of v@
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But, ¹-conditioned means of v@
(1)X

and L
Y
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(1)Z

(t) are nil because of the stochasticity
of v@

(1)
. Then, the ususal mean leads to zero in both cases
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and
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The mixed stress which is a sum of such terms is nil. The announced result is then
proved.
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